banner-lch

Solar Workforce Pro

Your path to job-ready solar careers

Solar Workforce Pro is a comprehensive learning initiative for installers, O&M technicians, site supervisors, and module-line technicians. In today’s rooftop and utility-scale environment, mastering safety, installation and commissioning, SCADA monitoring, performance diagnostics, and quality/EL testing-as well as substation/protection basics and EPC procurement-is essential. This program builds core hands-on skills, practices real plant workflows (IV curve, thermography, CMMS), and develops advanced troubleshooting and documentation, offering an NSQF/SCGJ-aligned, step-by-step path to becoming a Solar Operations & Manufacturing Champion.

Why Should You Join?

  1. Build end to end solar capability from site survey and design to installation, testing, commissioning and O&M.
  2. Strengthen safety and electrical discipline with PPE, LOTO, work at height, tool care and clean documentation.
  3. Execute live workflows stringing, DC and AC cabling, earthing, IV curve testing, inverter start up and handover.
  4. Read SCADA dashboards, track PR and CUF, and troubleshoot losses with clear, evidence based RCA.

Question Icon
Each question or scenario offers four choices, with one correct answer. Correct answers turn green, validating your understanding, with a Know More button to explore detailed explanations, examples, and tips. Incorrect answers turn red, while the correct answer is highlighted in green.
Know More Icon
The Know More button explains why the correct answer is right.
Retry Icon
You cannot undo wrong answers but must complete the module and retry, reinforcing knowledge for better retention in future attempts.

Question Icon
Simulation-based questions, real-life case studies, and quizzes for hands-on application.

Question Icon
Reinforces key concepts for long-term memory retention.

Question Icon
 Learn at your convenience on your computer or mobile device with a stable internet connection.

Benefits and Certification Advantages

  • Practice first learning that mirrors real solar sites with rigs, checklists and MCQs for instant feedback.
  • birderCerti
  • Milestone certificates that validate progress from foundations to specialisation, capped with a portfolio ready capstone.
  • birderCerti
  • Employer ready records torque logs, insulation and IV sheets, photo evidence and tidy as built drawings.
  • birderCerti
  • Measurable plant outcomes better PR and CUF, faster audits and fewer repeat calls.
  • birderCerti
Who Is This Program For?
Learners and Students
Card Image 1

Hands on solar skills with a clear path from basics to specialisation

Solar Technicians and Field Teams
Card Image 2

Standardised installs, testing, safety and documentation across sites

Supervisors and Ops Teams
Card Image 2

Better PR and CUF, confident audits and growth into advanced roles

Solar Power:

Solar power is electricity made from sunlight. The most common route is photovoltaics (PV): light hits a semiconductor cell, freeing electrons and producing direct current (DC), an inverter converts that to alternating current (AC) for homes, industry, and the grid. PV wins because it’s modular (one panel to thousands), quick to install, and cost-efficient. There’s also concentrated solar power (CSP), which uses mirrors to make heat and drive a turbine-useful when thermal storage is desired-but most new capacity worldwide is photovoltaics (PV).

A quick, Engaging History

  • 1839: Edmond Becquerel observes the photovoltaic effect.
  • 1883: Charles Fritts builds the first selenium solar cell.
  • 1905-1921: Albert Einstein explains the photoelectric effect (Nobel Prize in 1921).
  • 1954: Bell Labs unveils the first practical silicon PV cell (~6% efficiency).
  • 1958-1960s: PV goes to space-satellites like Vanguard 1 prove solar’s reliability.
  • 2000s-today: Manufacturing scale and tech (PERC, TOPCon, HJT, bifacial) slash costs and lift efficiencies; PV becomes a mainstream power source on Earth, not just in orbit.

In 1839, a 19-year-old French experimenter, Alexandre-Edmond Becquerel (son of the electrochemist Antoine César Becquerel) was tinkering in his father’s Paris lab with a tiny electrochemical cell two platinum electrodes dipped in an acidic solution, one of them coated with silver chloride. He connected the cell to a galvanometer (a needle meter that twitches when current flows). Out of curiosity, he shone light onto the silver-chloride-coated electrode. The needle jumped. Dim the light needle falls. Brighten it needle rises. He had found that light could directly generate a voltage and current in matter: the photovoltaic effect.

Becquerel repeated the trials carefully changing light intensity, swapping electrodes, checking temperatures to rule out simple heating or chemical artifacts. The correlation held, illumination created an electrical response that vanished in the dark. He wrote up the results for the French Academy, showing that sunlight could be converted straight into electricity without moving parts. (This was decades before vacuum-tube photoelectric experiments or Einstein’s quantum explanation; Becquerel’s was a wet, electrochemical system, but the core idealight → electrical power was the same breakthrough.)

Why it matters: Becquerel didn’t build rooftop panels, but he opened the door. His observation became the seed for solid-state photovoltaics (PV) a century later selenium cells in the 1880s, silicon at Bell Labs in 1954, and today’s gigawatt-scale solar farms. In classroom-speak: Becquerel showed that photons can push charges, and the world’s PV industry is the long, elegant proof of that idea at scale.

Read More

1883 Charles Fritts and the first selenium solar cell in New York, inventor Charles Fritts coated a thin selenium wafer with a whisper-thin layer of gold,, creating a metal-semiconductor junction that produced electricity when illuminated. The device’s efficiency was tiny (well under 1%), yet it did something astonishing for its time: turn light directly into current with no moving parts. Fritts even installed experimental panels on a rooftop, proving the concept outside a lab. His selenium cells were the first glimpse of solid-state solar power a crude ancestor of modern photovoltaics (PV).

Read More

1905 / 1921- Einstein explains the photoelectric effect (Nobel Prize 1921) Physicists knew light could knock electrons out of materials, but classical waves couldn’t explain the details. In 1905, Albert Einstein proposed that light comes in packetsquanta (photons)and that an electron escapes only if a photon carries enough energy. This simple idea explained why brighter light isn’t enough if the color (frequency) is wrong, and why there’s no delay in electron emission. The insight reshaped physics and earned Einstein the 1921 Nobel Prize, laying the conceptual groundwork for PV: photons can deliver energy directly to electrons.

Read More

1954 -Bell Labs and the first practical silicon PV cell (~6% efficiency) At Bell Telephone Laboratories, Daryl Chapin, Calvin Fuller, and Gerald Pearson engineered a silicon p–n junction that produced significant power under sunlightabout 6% efficiency, a leap beyond selenium. They ran a toy Ferris wheel and a radio transmitter straight from the cell to show it worked. The Bell cell was the first practical photovoltaic device: robust, reproducible, and powerful enough to matter. From that moment, silicon became the main road for solar electricity.

Read More

1958 – 1960s - Solar leaves Earth Vanguard 1 and the space era Batteries died too quickly in early satellites, so engineers tried PV in orbit. Vanguard 1 (1958) used tiny solar cells to power its radios for years, long after its batteries were exhaustedan unmistakable proof of reliability and longevity. Through the 1960s, spacecraft adopted solar as the default power source: no fuel, no moving parts, and steady output in sunlight. Space made PV credible, accelerated improvements, and quietly funded the silicon solar industry that would later come down to Earth.

Read More

2000s – today- today Scale, new cell tech, and the fall of cost Global manufacturing ramped, supply chains matured, and PV costs plunged. Cell architectures evolved PERC improved rear-side collection, TOPCon reduced recombination losses, HJT combined amorphous and crystalline layers for high efficiency, and bifacial modules added rear-side gain using albedo. Utility parks went gigawatt-scale, rooftops spread across cities, and PV paired naturally with batteries. The result: in many regions solar is now the lowest-cost new electricity, a mainstream pillar of power systems rather than a niche for satellites.

Read More

Solar Power: Why It Matters

Clean local electricity:

Solar turns sunlight into power without burning fuel cutting emissions, air pollution, and water use, while tapping a resource available everywhere the sun shines.

Fast to build, easy to scale:

From a 5 kW rooftop to a gigawatt park, photovoltaics (PV) is modular. Projects can be deployed in weeks to months, not years, and expanded in stages as demand grows.

Jobs across the value chain:

Installation, commissioning, operations & maintenance, quality, design, logistics, manufacturingsolar creates hands-on careers at every skill level, exactly the roles this program prepares you for.

Good for rooftops and remote sites alike:

PV works on homes, schools, warehouses, pumps, telecom towers, and clinics bringing power to places where new lines are slow or costly, and lowering bills where the grid is strong.

Future-ready technology:

Cell architectures (PERC, TOPCon, HJT), bifacial modules, better inverters, and smarter software keep lifting efficiency and value so skills you learn today remain relevant as tech advances.

Lowest-cost new energy in many markets:

Module prices and balance-of-system costs have fallen dramatically; well-designed projects now deliver competitively priced electricity with predictable costs over 20–25 years.

Energy security and price stability:

Sunlight has no fuel price. Solar reduces exposure to imported fuels and volatile commodity cycles, giving households, businesses, and grids more stable long-term costs.

Strong partner for storage and the modern grid:

Solar pairs naturally with batteries to deliver evening power, shave peaks, and improve reliability. With smart controls (SCADA, forecasting, scheduling), it supports a resilient, flexible grid.

Measurable performance not guesswork:

Clear KPIsPerformance Ratio (PR) and Capacity Utilisation Factor (CUF)let owners and operators track health, prove results, and improve output with data-driven O&M.

Aligned with national goals:

Solar supports targets for clean energy, industrial growth, and green jobs. Training more PV professionals accelerates safe builds, higher uptime, and better returns making the transition faster and fairer for everyone.

Do / Don’t - Being a Solar Power Champion

Solar power powers cleaner air, lower bills, and energy independence: Being a champion means you protect people, deliver performance, and leave a paper-trail that any inspector or employer can trust. Keep these Do / Don’t rules front and center.

Do

Lead with safety:

Inspect anchors/lifelines, wear PPE, apply LOTO, and use PTW no task outranks a safe task.

Build to standard:

Follow CEA/BIS/IS codes; torque, insulation, continuity, and polarity before energizing.

Label like the SLD:

Make field labels mirror the Single-Line Diagram photograph tags and routes for traceability.

Prove, don’t claim:

Capture unedited photo evidence (timestamp, asset ID, meter display) and attach to reports.

Run by the data:

Monitor PR/CUF and SCADA alarms; hunt losses with IV curves and thermography.

Close the loop:

Raise CMMS tickets, document findings, and close with RCA/CAPA so problems don’t repeat.

Respect the site:

Manage cables, earthing, and SPD cleanly leave rooftops and grounds tidy, walkways clear.

Keep learning:

Stay current on NSQF/SCGJ skills and new tech (bifacial, TOPCon, trackers, storage).

Don’t

Don’t bypass:

Interlocks, guards, or isolation to save time.

Don’t energize:

Without completed checks, sign-offs, and acceptance criteria met.

Don’t clear SCADA alarms:

Without a verified root cause and evidence of the fix.

Don’t mismatch:

Field labels and SLD names or proceed when they do not match.

Don’t submit partial dossiers:

No missing test sheets, photos, WIR/MIR, or as-builts.

Don’t guess with weather or permits:

Account for tilt/azimuth, wind, and approvals before work.

Don’t hide defects or tweak data:

Honest diagnostics today prevent bigger failures tomorrow.

Don’t leave a mess:

Offcuts, packaging, and debris are hazards remove them before handover.

Bottom line: A Solar Power Champion delivers safe work, compliant builds, reliable performance, and clean evidence every shift, every site.

Key terms (full forms) at a glance

MMS (Module Mounting Structure):

The rails, clamps, and foundations/ballast/piles that hold PV modules at the correct tilt and direction. It keeps panels secure under wind/snow loads, ensures alignment for best energy, and meets structural/safety codes essential for both rooftops and ground-mount sites.

String / Array / Block:

A string is modules in series; strings combine into an array; arrays feed an inverter block. This hierarchy drives electrical sizing, IV testing, labelling, isolation, and fault-finding in the field.

Inverter (String/Central):

Power electronics that convert DC→AC; string inverters are many small units near arrays, central are large block units. They perform MPPT, protections, and grid quality output core to commissioning, monitoring, and performance.

SPD / LA / Earthing:

Surge Protective Devices, Lightning Arresters, and the grounding network that shield equipment from surges, lightning, and faults. They’re mandatory for safety/uptime and referenced in CEA/BIS inspection checklists.

IV / EL - IV-Curve & Electroluminescence:

IV tests show electrical health of strings/modules; EL is a dark-room image revealing micro-cracks and cell defects. Both underpin acceptance testing, diagnostics, and warranty claims.

Torque / Insulation / Continuity / Polarity Tests:

Standard pre-energisation checks to confirm tight terminations, insulation resistance, conductor integrity, and correct polarity. They prevent hot-spots and nuisance trips and speed CEI/CEIG clearance.

PR / CUF - Performance Ratio / Capacity Utilisation Factor:

PR measures system efficiency independent of irradiance; CUF shows delivered energy vs nameplate over time. Together they’re headline KPIs for O&M SLAs and benchmarking.

CMMS - Computerised Maintenance Management System:

The ticket and history system for preventive/corrective maintenance, spares, and SLAs. It enforces discipline, reduces MTTR, preserves evidence, and makes audits straightforward.

SCADA / DAS / RTU:

Supervisory control & visualisation (SCADA), data acquisition (DAS), and field interface (RTU) that bring plant data to screens. They enable real-time alarms, KPI/energy reporting, remote resets, and reliable operations.

SLDC / ABT / DSM:

SLDC schedules and controls the state grid; ABT is the tariff framework; DSM settles deviations from schedule. Knowing these avoids penalties and keeps utility-scale plants compliant.

CEI/CEIG - Electrical Inspectorate:

Statutory authority reviewing documentation and inspecting plants before energisation. Their approvals are required for lawful commissioning and rely on test records, drawings, and safety logs.

CEA / BIS / IS / IEC - Rules & Standards:

CEA issues grid/safety regulations; BIS/IS are Indian standards; IEC are international references. Designers, EPCs, and inspectors rely on them for equipment choice and acceptance criteria.

PPA / CTU / STU / ISTS:

Power Purchase Agreement defines sale terms; CTU/STU are transmission operators; ISTS is the inter-state network. These govern evacuation approvals, metering, billing, and commercial viability.

PSS / Bay (AIS/GIS):

Pooling Substation and its switchgear “bay” (air- or gas-insulated) where plant power is stepped up and connected to the grid. It houses metering, protection, and interlocks-central to safe evacuation.

MC4 - PV DC Connector:

The standard, weatherproof plug for PV strings enabling quick, polarity-safe, low-resistance terminations. It speeds installation, improves serviceability, and reduces contact faults.

CT / PT - Current & Potential Transformers:

Sensors that scale current/voltage for protection relays and revenue meters. They enable accurate billing (SEM/ABT) and correct relay coordination.

SLD - Single-Line Diagram:

The one-page electrical map showing sources, switchgear, protections, and interconnections. It’s the common language for design reviews, operations, isolation/LOTO, and inspections.

ITP / QAP - Inspection & Test Plan / Quality Assurance Plan:

The who-what-how and acceptance criteria for checks across construction and commissioning. They reduce NCRs, standardise quality, and speed handovers.

FAT / SAT - Factory/Site Acceptance Tests:

Proof that equipment meets specs at the factory and after installation. They catch defects early, protect warranties, and build confidence before energisation.

Soiling / Degradation / PID / LID:

Dirt build-up and ageing losses; PID (potential-induced) and LID (light-induced) are specific mechanisms. Managing these via cleaning, monitoring, and remedies restores PR and protects warranties.

SEM / ABT Meter - Special Energy Meter:

Time-stamped metering for energy and deviations under ABT/DSM. It’s the basis for commercial settlement and grid discipline.

JSA / HIRA / PTW / LOTO / WAH - Safety Toolkit:

Job Safety Analysis, risk assessment, permits to work, lock-out/tag-out, and work-at-height. They make zero-harm execution possible and are mandatory in audits.

ALMM - Approved List of Models & Manufacturers:

MNRE’s authorised PV module list for designated schemes/tenders. It affects eligibility, bankability, and procurement choices.

STC / NOCT - Module Rating Conditions:

STC is lab nameplate; NOCT reflects typical field temperatures. They drive realistic yield estimates and inverter sizing expectations.

GHI / DNI / DHI / POA - Irradiance Types:

Global, direct, diffuse, and plane-of-array irradiance used in modelling and diagnostics. They inform site selection, shading analysis, and PVsyst/HelioScope simulations.

Specific Yield - kWh per kWp:

The normalised energy metric (kWh/kWp/yr) to compare sites and O&M performance. Higher specific yield signals better design, execution, and maintenance.

BOS (Balance of System):

Everything in a plant except the modules (structures, cables, SCB/AJB/JB, inverters, transformers, protections). It completes the plant, enables safe power evacuation, protection, and metering, and is critical for a compliant, reliable installation.

SCB / AJB / JB Combiner/Junction Boxes:

Weatherproof boxes that gather strings and house fuses, SPD, shunts, and monitoring. They enable protection and measurement, neat cable routing, and fast isolation during commissioning or O&M.

DC/AC Ratio:

Installed DC kWp ÷ inverter AC kW; modest oversizing boosts morning/evening yield (with some noon clipping). It’s tuned for best LCOE while respecting thermal limits, grid codes, and owner specs.

WIR / MIR - Work/Material Inspection Requests:

Formal QA checkpoints to verify workmanship and materials against drawings and the ITP/QAP. They create the documented trail needed for handover, statutory approvals, and warranty support.

MPPT - Maximum Power Point Tracking:

Inverter/control function that keeps strings at their optimal V–I point for max energy. It improves yield across changing irradiance and temperature.

Bifacial / Albedo:

Bifacial modules harvest from both faces; albedo is ground reflectivity that boosts rear-side gain. Together they can lift energy if site layout and GCR are tuned.

Single-Axis Tracker / Backtracking / Stow:

Motorised structures that follow the sun; backtracking avoids row shading; stow is the high-wind safe posture. They increase yield but add controls and O&M needs.

PERC / TOPCon / HJT - Cell Technologies:

Modern cell architectures with higher efficiency and different degradation/temperature traits. Choosing the right tech affects PR, lifetime, and LCOE.

Temperature Coefficients (Voc/Pmax):

The % power/voltage drop per °C rise modules produce less as they heat up. Designers use this for cable/inverter sizing and yield estimates.

Voc / Isc / Vmp / Imp - Module Electrical Points:

Open-circuit voltage, short-circuit current, and voltage/current at maximum power. They drive string sizing, inverter windows, and safety limits.

DC Isolator / String Fuse / SPD Type II–III:

The standard array-side protection and isolation trio. They enable safe maintenance, limit fault energy, and protect against transients.

AFCI - Arc-Fault Circuit Interruption:

Protection that detects arcing on DC circuits and trips safely. It’s increasingly specified to reduce fire risk on large rooftops and carports.

ANSI Relay Codes (27/59/81/50/51/67):

Numeric shorthand for protection functions (under/over-voltage, frequency, overcurrent, directional). Used in schemes and test sheets for substation/bay protection.

Cable Types (1.5 kV DC / XLPE AC):

UV-resistant DC PV cables and cross-linked polyethylene AC cables in correct class and size. Proper selection minimises losses, heating, and trips.

Metering Class (0.2s) / CT–PT Class & Burden:

Accuracy classes for revenue meters and instrument transformers. They ensure bills and DSM settlements are precise and defensible.

SMB - String Monitoring Box:

A combiner with current sensors for each string. It gives visibility for PR loss hunting, early fault detection, and targeted maintenance.

Clipping / Curtailment:

Clipping is energy lost when DC exceeds inverter AC limit; curtailment is enforced reduction by grid/dispatcher. Both are tracked to explain yield gaps.

Availability vs Reliability:

Availability is the percentage of time the plant can dispatch; reliability is freedom from failures (ties to MTBF/MTTR). Both feed SLAs and bonus/penalty regimes.

BCU - Bay Control Unit:

The controller for an AIS/GIS bay that interfaces with SCADA. It manages interlocks, commands, and event records at the substation.

GNA / LTA / MTOA / STOA Grid Access:

General Network Access and long/medium/short-term open access tenors. They define who can move how much power, for how long, across networks.

CTUIL / STU - Transmission Authorities:

Central Transmission Utility of India Ltd and State Transmission Utilities handle connectivity, bay allocation, and approvals that precede energisation.

LCOE / BoM / BoQ:

Levelised Cost of Energy over life; Bill of Materials; Bill of Quantities. These anchor budgeting, procurement, and owner decisions.

EPC / EPCM / IPP / O&M SLA:

Engineering-Procurement-Construction (build), EPC Management (owner-managed), Independent Power Producer (owns/operates), and O&M service-level agreements. The model chosen shapes scope, risk, and KPIs.

Net-Metering / Gross-Metering:

Rooftop policies where you offset your consumption (net) or sell all energy to the grid (gross). They drive economics, metering setups, and paperwork.

CFA (PM Surya Ghar):

Central Financial Assistance for residential rooftops under MNRE. It sets eligibility, subsidy amounts, and documentation—key for DISCOM dossiers.

BESS / PCS / RTC Storage & Hybrid:

Battery Energy Storage System and its Power Conversion System; Round-the-Clock supply blends solar/wind/storage. These enable firm power, shifting, and peak shaving in modern PPAs.

SCGJ QP/NOS - Skill Council for Green Jobs Standards:

Job standards (Qualification Packs) and detailed tasks (National Occupational Standards). They align training, assessments, and certificates with real roles.

NSQF - National Skills Qualifications Framework:

India’s skills level system that sets learning outcomes and certifications. It lets employers read your capability level at a glance.

Benefits & Certification Advantages

For Candidates
Job-ready skills, proven:

Hands-on training across install → commissioning – O&M (IV/insulation / torque checks, SCB/inverter start-up, SCADA basics), plus documentation that passes audits. SLD-aligned labels, WiR-MIR, photo evidence.

Two credentials that signal competence:
  • Basic Certificate (Modules 1–3): Safety, installation, commissioning fundamentals.
  • Advanced Certificate (Modules 4–5): Two specialisations + capstone + OJT. Both are mapped to NSQF/SCGJ outcomes for clear, industry-recognised levels.
Verifiable & shareable:

QR-coded certificate (LinkedIn-ready) and digital badges for recruiters to verify instantly.

Portfolio employers trust:

Survey notes, SLD-matched labels, IV/IR test reports, PLC/PV snapshots, RCA/CAPA write-ups – evidence you can do the job from day one.

Confidence & Safety culture:

Practical drills for LOTO, PTW, JSA/HIRA reduce on-site anxiety and mistakes.

Faster interviews, better offers:

Standardised skill language (NSQF/SCGJ) shortens screening; demonstrable safety (PPE, LOTO, WAH) and process discipline stand out.

Career mobility:

Start in installation/commissioning, advance into O&M/SCADA/QA, specialise in protection or module-line manufacturing without starting over.

For Employers
Faster onboarding; lower training overhead:

Graduates already follow SLD-aligned naming, use checklists, and produce audit-ready packs less hand-holding, earlier productivity.

Safety and compliance baked in:

Candidates arrive fluent in PPE, LOTO, WAH, PTW, and aware of CEA/BIS/IS expectations fewer incidents, smoother CEI/CEIG inspections.

Measurable O&M impact:

Skill in SCADA triage, IV diagnostics, thermography, RCA/CAPA helps lift PR/CUF, cut MTTR, and avoid repeat faults.

Standardised skill signal:

NSQF/SCGJ-mapped certificates make capability legible across vendors and sites better workforce planning and vendor QA.

Traceability & audit readiness:

Graduates produce consistent WIR/MIR, torque/insulation/IV sheets with photos and instrument IDs-clean evidence for warranties and regulators.

Reduced downtime risk:

Correct pre-energisation practices (polarity, insulation, torque) and disciplined labelling/SLD alignment prevent costly errors during commissioning and switching.

Talent pipeline for growth:

Clear Basic → Advanced → Specialist pathway supports multi-site expansion without compromising quality.

Certification Advantages (Both Sides)

Mapped to real roles:

Outcomes align to SCGJ QPs/NOS (e.g., InstallerElectrical, O&M Technician), ensuring training = workplace tasks.

Verification & portability:

QR verification, unique IDs, and standard terminology make credentials portable across EPCs/O&M providers and states.

Assessment that mirrors the field:

Randomised MCQs + OSCE-style practicals (stations for IV/insulation/LOTO/SCADA) + capstone/OJT.

Continuous improvement:

Analytics on pass rates and skill gaps feed back into training plans, helping candidates upskill and employers tune on boarding.

“From Sunlight to Safe Megawatts : Learn it, Build it, Prove it.”

Build a rock-solid foundation: what a photovoltaics (PV) system is, how electricity flows (DC → AC), and how to work safely on rooftops and plant sites using PPE, LOTO, WAH and good documentation habits. This is a learn-and-practice module-explore, apply, and revisit anytime.

What you’ll learn module_book_dias

1. Solar System - Plain English: Energy vs power, voltage/current/resistance (Ohm’s law), PV modules and BOS, how strings → arrays/blocks → inverter → transformer move power, and why string vs central inverters and MPPT matter.

2. Safety First: PPE selection and fit, Lock-Out Tag-Out (LOTO) to isolate energy, Work-At-Height (WAH) with certified anchors and 100% tie-off, JSA/HIRA to spot hazards and set controls, Permit-to-Work (PTW) essentials, tool handling, and electrical-shock basics.

3. Site Etiquette & Documentation: Field labels that mirror the Single-Line Diagram (SLD), checklists that turn standards into do-confirm steps (torque, polarity, insulation), and photo evidence with timestamp/asset ID for audits and root-cause analysis.

4. Standards & Roles: How NSQF/SCGJ define job roles and competencies (installer, O&M technician), and why CEA/BIS/IS codes drive sizing, protection, tests, and records-so your work is safe, inspectable, and job-ready.

Objective module_book_dias

By the end, you can explain a PV system in simple terms, work safely using PPE/LOTO/WAH with JSA/HIRA and PTW, and use drawings, labels, checklists, and photo evidence to deliver clean, auditable work like a pro.

This module gets you hands-on with structures, wiring, and neat, code-compliant installs.

In this module, you will learn module_book_dias

1. MMS & Layout Rails, clamps, foundations/ballast, tilt/azimuth, GCR basics.

2. Stringing & Cabling MC4 terminations, DC/AC cabling, routing, earthing/SPD/LA, gland/lug/torque.

3. Boxes & Balance of System SCB/AJB/JB, combiner fuses, isolators, SMBs.

4. Rooftop to Utility Differences Net-metering dossiers vs pooling substation/bay, documentation.

Objective of this module module_book_dias

Install MMS and cabling to spec, complete WIR/MIR for quality checks, and prepare tidy, audit-ready install packs.

This module moves from first energisation to early-stage O&M so you can leave a plant running and documented.

In this module, you will learn module_book_dias

1. Pre-Energisation Tests: Torque, insulation, continuity, polarity; IV-curve basics.

2. Inverter Start-up & Handover: Parameter checks, MPPT, protection interlocks, as-builts.

3. SCADA/DAS Basics: Alarms, tags, PR/CUF dashboards; evidence screenshots.

4. Early O&M: Cleaning & vegetation SOPs, CMMS tickets, spares, first-month PR review.

Objective of this module module_book_dias

Commission safely, produce a clean handover (test sheets, photos, as-builts), and open/close O&M tickets with data-backed actions.

Deeper, role-ready skills. Pick two tracks based on your career goal.

Track 4A: O&M Diagnostics & Thermography

You’ll learn: Fault trees, PR gaps, drone/handheld IR, PID/LID symptoms, warranty/RMA, RCA/CAPA.

Outcome: Diagnose & fix performance drops; present a PR recovery case.

Track 4B: SCADA, Yield & Scheduling (SLDC)

You’ll learn: Historian tags, alarm triage, specific yield analytics, day-ahead/intraday schedules, ABT/DSM logs.

Outcome: Run a basic schedule, justify curtailment/clipping, and publish weekly KPI reports.

Track 4C: Substation, Protection & Bay Operations

You’ll learn: PSS layout, AIS/GIS bays, CT/PT, relay code basics (27/59/81/50/51), secondary injection, switching orders.

Outcome: Execute safe switching, read protection events, and prep CEI files.

Track 4D: Quality, EL/IV & Compliance

You’ll learn: ITP/QAP, sampling (AQL), EL imaging acceptance, NCR closure, FAT/SAT witness skills.

Outcome: Lead QA walks and close punch lists with evidence.

Track 4E: Design & Drafting (AutoCAD + PVsyst/HelioScope)

You’ll learn: Layouts, cable/voltage-drop, DC/AC ratio, earthing, energy modelling & losses.

Outcome: Deliver a design pack with BoM/BoQ and yield summary.

Track 4F: EPC Procurement & Stores

You’ll learn: BoM→PR→PO flow, vendor qualification, incoming QA, inventory KPIs, SERP/ERP entries.

Outcome: Keep projects moving with on-time materials and clean traceability.

Prove you’re job-ready: solve a real scenario and complete an on-site immersion.

In this module, you will learn module_book_dias

1. Capstone Case: Team project (e.g., PR dip recovery, 200-kW rooftop design & T&C, tracker fault wave).

2. On-Job Training (OJT): 60–80 hours at an EPC/O&M/DISCOM site; complete logbooks and supervisor sign-offs.

3. Assessment & Presentation: Practical OSCE stations + viva; submit a portfolio with evidence.

Objective of this module module_book_dias

Deliver a defensible, evidence-backed solution; present your portfolio (surveys, WIR/MIR, IV/insulation, EL/IR, SCADA KPIs); and earn the Advanced Certificate mapped to SCGJ outcomes.

क्यों जुड़ें इस प्रोग्राम से?

  1. साइट सर्वे, डिज़ाइन, इंस्टॉलेशन, टेस्टिंग, कमीशनिंग से लेकर O&M तक-पूरी सोलर प्रक्रिया सीखें।
  2. सुरक्षा और इलेक्ट्रिकल अनुशासन को मजबूत करें-PPE, LOTO, ऊँचाई पर काम, टूल की देखभाल और साफ-सुथरा डॉक्यूमेंटेशन सीखें।
  3. लाइव प्रोजेक्ट्स पर काम करें -स्ट्रिंगिंग, DC और AC केबलिंग, अर्थिंग, IV कर्व टेस्टिंग, इन्वर्टर स्टार्टअप और हैंडओवर तक।
  4. SCADA डैशबोर्ड पढ़ना सीखें, PR और CUF ट्रैक करें और लॉसेस की सही जांच (RCA) करना जानें।

Question Icon
हर सवाल आपके सोचने की क्षमता के लिए चार विकल्प देता है, जिनमें से एक ही सही उत्तर होता है। यदि आपका जवाब सही रहेगा तो वह हरे रंग में बदल जाएगा, जो आपकी समझ को प्रमाणित करेगा।
Know More Icon
गलत जवाब देने पर वह विकल्प लाल हो जाता है। इसके अलावा आप "अधिक जानें" पर क्लिक कर संबंधित सवाल का विस्तृत विवरण जान सकते हैं और यह भी पता चलेगा कि यही उत्तर क्यों सही है।
Retry Icon
आप गलत उत्तर को सही नहीं कर सकते हैं मगर एक बार पूरे सवालों का जवाब देने के बाद आप दोबारा शुरू कर सकते हैं ताकि भविष्य के प्रयासों में बेहतर तरीके से ज्ञान बरकरार रख सकें।

Question Icon
कार्रवाई योग्य सततता आधारित सवाल, वास्तविक जीवन की घटनाओं से जुड़े और व्यावहारिक अनुप्रयोग के लिए क्विज़।

Question Icon
लंबे समय तक याद रखने के लिए प्रमुख अवधारणाओं को सुदृढ़ करता है।

Question Icon
स्थिर इंटरनेट कनेक्शन के साथ अपने कंप्यूटर, मोबाइल, टैबलेट या किसी अन्य इलेक्ट्रॉनिक डिवाइस पर अपनी सुविधानुसार सीख सकते हैं।

लाभ और प्रमाणन के फायदे

  • असली सोलर साइट जैसी प्रैक्टिकल ट्रेनिंग - रिग्स, चेकलिस्ट और MCQs के साथ तुरंत फीडबैक।
  • birderCerti
  • हर लेवल पर माइलस्टोन सर्टिफिकेट - बेसिक से लेकर स्पेशलाइजेशन तक, और आखिर में पोर्टफोलियो-रेडी कैपस्टोन प्रोजेक्ट।
  • birderCerti
  • नौकरी के लिए तैयार रिकॉर्ड्स - टॉर्क लॉग्स, इंसुलेशन और IV शीट्स, फोटो एविडेंस और सटीक “As-Built” ड्रॉइंग्स।
  • birderCerti
  • मापने योग्य नतीजे-बेहतर PR और CUF, तेज़ ऑडिट और कम रिपीट कॉल्स।
  • birderCerti
यह कार्यक्रम किनके लिए है
लर्नर्स और स्टूडेंट्स
Card Image 1

बेसिक से एडवांस तक सोलर की प्रैक्टिकल स्किल्स सीखें और करियर की स्पष्ट दिशा बनाएं।

सोलर टेक्नीशियन और फील्ड टीमें
Card Image 2

हर साइट पर एक जैसा स्टैंडर्ड - इंस्टॉलेशन, टेस्टिंग, सेफ्टी और डॉक्यूमेंटेशन में।

सुपरवाइज़र और ऑप्स टीमें
Card Image 2

बेहतर PR और CUF हासिल करें, आत्मविश्वास से ऑडिट दें और उन्नत भूमिकाओं तक बढ़ें।

सौर ऊर्जा क्या है:

सौर ऊर्जा वह बिजली है जो सूरज की रोशनी से बनाई जाती है। इसका सबसे आम तरीका फोटोवोल्टाइक (Photovoltaic - PV) है - जब प्रकाश एक सेमीकंडक्टर सेल पर पड़ता है, तो यह इलेक्ट्रॉनों को मुक्त करता है, जिससे डायरेक्ट करंट (DC) उत्पन्न होती है। फिर एक इन्वर्टर इस DC को अल्टरनेटिंग करंट (AC) में बदल देता है, जो घरों, उद्योगों और ग्रिड में इस्तेमाल होती है। PV तकनीक लोकप्रिय है क्योंकि यह मॉड्यूलर (एक पैनल से लेकर हज़ारों तक), तेज़ी से इंस्टॉल होने वाली और लागत प्रभावी है। एक और तकनीक है कंसन्ट्रेटेड सोलर पावर (CSP), जिसमें दर्पणों (mirrors) से सूरज की रोशनी को केंद्रित करके ऊष्मा (heat) बनाई जाती है, जो टर्बाइन चलाने में उपयोगी होती है - विशेष रूप से तब जब थर्मल स्टोरेज की आवश्यकता होती है। लेकिन आज दुनिया भर में लगने वाली नई सौर क्षमता का अधिकांश भाग फोटोवोल्टाइक (PV) तकनीक से आता है।

सौर ऊर्जा का एक रोचक इतिहास

  • 1839: एडमंड बेकरेल (Edmond Becquerel) ने पहली बार फोटोवोल्टाइक प्रभाव (Photovoltaic Effect) का अवलोकन किया।
  • 1883: चार्ल्स फ्रिट्स (Charles Fritts) ने पहला सेलेनियम सोलर सेल बनाया।
  • 1905-1921: अल्बर्ट आइंस्टीन (Albert Einstein) ने फोटोइलेक्ट्रिक प्रभाव (Photoelectric Effect) की व्याख्या की (जिसके लिए उन्हें 1921 में नोबेल पुरस्कार मिला)।
  • 1954: बेल लैब्स (Bell Labs) ने पहला प्रायोगिक सिलिकॉन सोलर सेल बनाया जिसकी दक्षता लगभग 6% थी।
  • 1958-1960s: PV तकनीक ने अंतरिक्ष (Space) में कदम रखा - Vanguard 1 जैसे उपग्रहों ने सौर ऊर्जा की विश्वसनीयता साबित की।
  • 2000 से आज तक: बड़े पैमाने पर उत्पादन और नई तकनीकों (जैसे PERC, TOPCon, HJT, bifacial) ने लागत को घटाया और दक्षता को बढ़ाया; अब PV पृथ्वी पर मुख्य ऊर्जा स्रोत बन चुका है, सिर्फ़ अंतरिक्ष में नहीं।

1839 एडमंड बेकरेल की खोज, 1839 में, 19 वर्षीय फ्रांसीसी वैज्ञानिक अलेक्ज़ांद्र-एडमंड बेकरेल (प्रसिद्ध रसायनज्ञ एंटोनी सीज़र बेकरेल के पुत्र) अपने पिता की पेरिस प्रयोगशाला में एक छोटे इलेक्ट्रोकेमिकल सेल के साथ प्रयोग कर रहे थे - जिसमें दो प्लैटिनम इलेक्ट्रोड एक अम्लीय विलयन (acidic solution) में डूबे थे, और उनमें से एक को सिल्वर क्लोराइड (Silver Chloride) से कोट किया गया था। उन्होंने इस सेल को एक गैल्वेनोमीटर (ऐसा उपकरण जिसकी सुई तब हिलती है जब धारा प्रवाहित होती है) से जोड़ा। जिज्ञासावश, उन्होंने सिल्वर-क्लोराइड-कोटेड इलेक्ट्रोड पर प्रकाश डाला। सुई हिली! जब उन्होंने प्रकाश कम किया - सुई नीचे गिरी। प्रकाश बढ़ाया - सुई फिर ऊपर गई। इस प्रकार, उन्होंने पाया कि प्रकाश सीधे तौर पर किसी पदार्थ में वोल्टेज और करंट उत्पन्न कर सकता है। यही था - फोटोवोल्टाइक प्रभाव (Photovoltaic Effect) की खोज।

बेकरेल ने अपने प्रयोगों को सावधानीपूर्वक कई बार दोहराया - उन्होंने प्रकाश की तीव्रता बदली, इलेक्ट्रोड्स को आपस में बदला, और तापमान की जांच की, ताकि यह सुनिश्चित किया जा सके कि परिणाम केवल गर्मी या किसी रासायनिक प्रतिक्रिया का प्रभाव नहीं हैं। हर बार नतीजा वही रहा: जब प्रकाश डाला गया, तो विद्युत प्रतिक्रिया उत्पन्न हुई, और अंधेरे में वह पूरी तरह गायब हो गई। उन्होंने अपने निष्कर्षों को फ्रेंच एकेडमी ऑफ साइंसेज को प्रस्तुत किया, यह दिखाते हुए कि सूरज की रोशनी को सीधे बिजली में बदला जा सकता है बिना किसी यांत्रिक हिस्से के। (यह खोज वैक्यूम ट्यूब फोटोइलेक्ट्रिक प्रयोगों या आइंस्टीन की क्वांटम व्याख्या से कई दशक पहले की थी। बेकरेल का सेटअप एक गीला, इलेक्ट्रोकेमिकल सिस्टम था, लेकिन उसका मूल विचार - प्रकाश से विद्युत ऊर्जा (light → electrical power) - वही महान खोज थी जिसने आगे की दिशा तय की।)

इसका महत्व क्यों है बेकरेल ने न तो कोई रूफटॉप सोलर पैनल बनाया और न ही बिजली संयंत्र, लेकिन उन्होंने इस पूरी क्रांति के दरवाज़े खोल दिए। उनका यह अवलोकन आगे चलकर ठोस अवस्था (Solid-State) फोटोवोल्टाइक तकनीक (PV) की नींव बना - 1880 के दशक के सेलेनियम सेल्स, 1954 के बेल लैब्स के सिलिकॉन सेल्स, और आज के गीगावॉट स्तर के सोलर फार्म्स - सब उसी विचार की लंबी, सुंदर परिणति हैं। सरल शब्दों में कहें तो, बेकरेल ने दिखाया कि प्रकाश (फोटॉन) इलेक्ट्रॉनों को गतिशील कर सकता है, और आज की पूरी सौर ऊर्जा उद्योग उसी विचार का विशाल, व्यावहारिक प्रमाण है।

Read More

1883 चार्ल्स फ्रिट्स और पहला सेलेनियम सोलर सेल न्यूयॉर्क में आविष्कारक चार्ल्स फ्रिट्स (Charles Fritts) ने एक पतली सेलेनियम (Selenium) प्लेट पर सोने (Gold) की बहुत बारीक परत चढ़ाई। इस संयोजन ने एक मेटल–सेमीकंडक्टर जंक्शन (metal–semiconductor junction) बनाया, जो प्रकाश पड़ने पर बिजली उत्पन्न करता था। इस यंत्र की दक्षता बहुत कम थी 1% से भी कम, लेकिन उस समय के लिए यह एक अद्भुत खोज थी: प्रकाश को सीधे विद्युत धारा में बदलना, वह भी बिना किसी यांत्रिक हिस्से के। फ्रिट्स ने प्रयोगशाला से बाहर निकलकर रूफटॉप पर परीक्षण पैनल भी लगाए, यह साबित करने के लिए कि यह विचार वास्तविक परिस्थितियों में भी काम करता है। उनके सेलेनियम सेल्स ने दुनिया को पहली बार ठोस अवस्था (Solid-State) सौर ऊर्जा की झलक दिखाई जो आगे चलकर आधुनिक फोटोवोल्टाइक (PV) तकनीक का प्रारंभिक रूप बना।

Read More

1905 / 1921 आइंस्टीन और फोटोइलेक्ट्रिक प्रभाव (नोबेल पुरस्कार 1921) भौतिकविद पहले से जानते थे कि प्रकाश पदार्थों से इलेक्ट्रॉनों को बाहर निकाल सकता है लेकिन पारंपरिक तरंग सिद्धांत (classical wave theory) यह नहीं समझा पा रहा था कि यह प्रक्रिया कैसे और क्यों होती है। 1905 में, अल्बर्ट आइंस्टीन (Albert Einstein) ने एक क्रांतिकारी विचार प्रस्तुत किया कि प्रकाश ऊर्जा के छोटे-छोटे पैकेट्स में आता है, जिन्हें उन्होंने “क्वांटा” (या फोटॉन) कहा। उन्होंने बताया कि केवल वही इलेक्ट्रॉन बाहर निकलता है,जब फोटॉन में पर्याप्त ऊर्जा होती है जो उसे मुक्त कर सके। इस विचार ने समझाया कि सिर्फ प्रकाश की चमक बढ़ाने से इलेक्ट्रॉन नहीं निकलते, बल्कि रंग (या आवृत्ति) सही होना आवश्यक है, और यह भी कि इलेक्ट्रॉनों के उत्सर्जन में कोई विलंब क्यों नहीं होता। यह सरल लेकिन गहरा सिद्धांत भौतिकी की दिशा बदल गया, और इसके लिए आइंस्टीन को 1921 में नोबेल पुरस्कार से सम्मानित किया गया। उनकी यह खोज फोटोवोल्टाइक (PV) तकनीक की वैचारिक नींव बनी यानी, फोटॉन सीधे इलेक्ट्रॉनों को ऊर्जा प्रदान कर सकते हैं।

Read More

1954 बेल लैब्स और पहला व्यावहारिक सिलिकॉन सोलर सेल (~6% दक्षता) Bell Telephone Laboratories में वैज्ञानिक डैरिल चैपिन (Daryl Chapin), कैल्विन फुलर (Calvin Fuller) और जेराल्ड पीयरसन (Gerald Pearson) ने मिलकर एक सिलिकॉन p–n जंक्शन (silicon p–n junction) बनाया जो सूर्य के प्रकाश में काफी मात्रा में बिजली उत्पन्न करता था लगभग 6% दक्षता के साथ, जो सेलेनियम सेल्स की तुलना में एक बड़ी तकनीकी छलांग थी। उन्होंने यह दिखाने के लिए कि यह वास्तव में काम करता है, इस सेल से एक खिलौना फेरिस व्हील और एक रेडियो ट्रांसमीटर चलाया।“बेल सेल” (Bell Cell) पहला व्यावहारिक फोटोवोल्टाइक उपकरण (Practical Photovoltaic Device) बना जो मजबूत, दोहराने योग्य, और पर्याप्त रूप से शक्तिशाली था कि इसका वास्तविक उपयोग हो सके।इस पल से सिलिकॉन सौर ऊर्जा का मुख्य आधार बन गया, और आधुनिक सोलर इंडस्ट्री का रास्ता यहीं से शुरू हुआ।

Read More

1958 – 1960s का दशक सौर ऊर्जा पृथ्वी से परे: वैनगार्ड-1 और अंतरिक्ष युग की शुरुआत शुरुआती उपग्रहों में बैटरियाँ बहुत जल्दी खत्म हो जाती थीं, इसलिए इंजीनियरों ने अंतरिक्ष में सौर पैनल (PV cells) का प्रयोग करने का निर्णय लिया। वैनगार्ड-1 (Vanguard 1, 1958) उपग्रह ने छोटे सौर सेल्स का उपयोग करके अपने रेडियो को कई वर्षों तक चालू रखा, यहां तक कि जब उसकी बैटरियाँ पूरी तरह समाप्त हो चुकी थीं। यह प्रयोग विश्वसनीयता और दीर्घायु (reliability and longevity) का स्पष्ट प्रमाण था। 1960 के दशक तक, लगभग सभी अंतरिक्ष यानों ने सौर ऊर्जा को मुख्य ऊर्जा स्रोत के रूप में अपनाया कोई ईंधन नहीं, कोई चलने वाला भाग नहीं, बस सूर्य की रोशनी से सतत ऊर्जा उत्पादन। अंतरिक्ष युग ने सौर ऊर्जा को विश्वसनीय और सम्मानित तकनीक बना दिया, जिससे इस क्षेत्र में तेज़ी से नवाचार हुआ और सिलिकॉन सोलर इंडस्ट्री को वह आर्थिक समर्थन मिला, जिसने बाद में इसे पृथ्वी पर मुख्य ऊर्जा समाधान के रूप में स्थापित किया।

Read More

2000s के दशक से आज तक पैमाना, नई सेल तकनीकें और लागत में भारी गिरावट 2000 के बाद से वैश्विक निर्माण क्षमता में तेज़ी से वृद्धि हुई, सप्लाई चेन मजबूत हुईं, और फोटोवोल्टाइक (PV) की लागत तेजी से घटी। इस दौरान सेल आर्किटेक्चर (cell architectures) में बड़े सुधार हुए और बाइफेशियल (bifacial) मॉड्यूल्स ने रियर साइड गेन (rear-side gain) जोड़ा, जिससे सतह की परावर्तित रोशनी (albedo) से भी ऊर्जा उत्पन्न होने लगी। अब यूटिलिटी-स्केल सोलर पार्क्स गीगावाट स्तर तक पहुँच गए हैं, और रूफटॉप सोलर सिस्टम शहरों में तेजी से फैल चुके हैं। सौर ऊर्जा का बैटरियों के साथ संयोजन इसे और भी प्रभावी बना रहा है।परिणामस्वरूप आज दुनिया के कई क्षेत्रों में सौर ऊर्जा सबसे सस्ती नई बिजली बन चुकी है, जो अब किसी विशेष उपयोग के लिए नहीं, बल्कि मुख्य ऊर्जा प्रणाली का स्तंभ (mainstream pillar of power systems) बन गई है।

Read More

सौर ऊर्जा: इसका महत्व क्यों है

स्वच्छ और स्थानीय बिजली :

सौर ऊर्जा सूर्य की रोशनी को बिना किसी ईंधन को जलाए बिजली में परिवर्तित करती है। इससे प्रदूषण, ग्रीनहाउस गैस उत्सर्जन और जल की खपत में भारी कमी आती है। यह एक ऐसी ऊर्जा है जो हर उस जगह उपलब्ध है जहाँ सूरज चमकता है।

कई बाज़ारों में सबसे सस्ती नई ऊर्जा:

सोलर मॉड्यूल और सिस्टम इंस्टॉलेशन की लागत (Balance-of-System Costs) में पिछले वर्षों में भारी गिरावट आई है। अच्छी तरह से डिज़ाइन किए गए सौर प्रोजेक्ट अब 20–25 वर्षों तक स्थिर और अनुमानित लागत पर प्रतिस्पर्धी दरों पर बिजली प्रदान करते हैं।

तेज़ी से बनता है, आसानी से बढ़ाया जा सकता है:

5 किलोवाट के एक छोटे रूफटॉप सिस्टम से लेकर गीगावॉट स्तर के सौर पार्क तक फ़ोटोवोल्टिक (PV) तकनीक पूरी तरह मॉड्यूलर है। ऐसे प्रोजेक्ट कुछ हफ़्तों या महीनों में लगाए जा सकते हैं, वर्षों में नहीं। साथ ही, इन्हें बढ़ती मांग के अनुसार चरणों में विस्तार किया जा सकता है।

ऊर्जा सुरक्षा और मूल्य स्थिरता:

सूरज की रोशनी का कोई ईंधन मूल्य नहीं होता। सौर ऊर्जा विदेशी ईंधनों और अस्थिर वस्तु मूल्यों पर निर्भरता को कम करती है, जिससे घरों, व्यवसायों और विद्युत ग्रिडों को दीर्घकालिक लागत स्थिरता मिलती है।

पूरी वैल्यू चेन में रोज़गार के अवसर:

इंस्टॉलेशन, कमीशनिंग, संचालन और रखरखाव (O&M), गुणवत्ता नियंत्रण, डिज़ाइन, लॉजिस्टिक्स और निर्माण सौर ऊर्जा हर स्तर के कौशल वाले लोगों के लिए रोजगार के अवसर पैदा करती है। यह वही कौशल हैं जिनकी तैयारी यह कार्यक्रम आपको कराता है।

भंडारण और आधुनिक ग्रिड के लिए मज़बूत साझेदार:

सौर ऊर्जा बैटरियों के साथ स्वाभाविक रूप से जुड़ती है जिससे शाम के समय बिजली मिलती है, पीक डिमांड घटती है और विश्वसनीयता बढ़ती है। स्मार्ट कंट्रोल सिस्टम (जैसे SCADA, फोरकास्टिंग, शेड्यूलिंग) के साथ यह एक लचीले और मज़बूत ग्रिड को समर्थन देती है।

रूफटॉप और दूरदराज़ इलाकों दोनों के लिए उपयुक्त:

सौर PV तकनीक घरों, स्कूलों, गोदामों, पानी के पंपों, टेलीकॉम टावरों और क्लीनिकों में आसानी से काम करती है। यह उन इलाकों में बिजली लाने में मदद करती है जहाँ नई लाइनों का निर्माण धीमा या महँगा है, और जहाँ ग्रिड मज़बूत है वहाँ बिजली के बिलों को कम करती है।

मापनीय प्रदर्शन, अनुमान नहीं:

स्पष्ट KPI (Key Performance Indicators) जैसे परफॉर्मेंस रेशियो (PR) और कैपेसिटी यूटिलाइजेशन फैक्टर (CUF) मालिकों और ऑपरेटरों को सिस्टम की स्थिति पर नज़र रखने, परिणाम साबित करने और डाटा-आधारित संचालन व रखरखाव (O&M) से उत्पादन बढ़ाने में मदद करते हैं।

Mभविष्य के लिए तैयार तकनीक:

नई सेल आर्किटेक्चर PERC, TOPCon, HJT, द्विपक्षीय (bifacial) मॉड्यूल, उन्नत इन्वर्टर और स्मार्ट सॉफ़्टवेयर लगातार दक्षता और मूल्य बढ़ा रहे हैं। इसलिए आज सीखे गए कौशल आने वाले वर्षों में भी प्रासंगिक और उपयोगी बने रहेंगे।

राष्ट्रीय लक्ष्यों के अनुरूप:

सौर ऊर्जा स्वच्छ ऊर्जा, औद्योगिक विकास और हरित रोजगार के राष्ट्रीय उद्देश्यों का समर्थन करती है। अधिक PV पेशेवरों का प्रशिक्षण सुरक्षित इंस्टॉलेशन, अधिक अपटाइम और बेहतर रिटर्न सुनिश्चित करता है जिससे ऊर्जा परिवर्तन (energy transition) तेज़, टिकाऊ और सभी के लिए न्यायपूर्ण बनता है।

करें / न करें एक सोलर पावर चैंपियन बनें

सौर ऊर्जा स्वच्छ हवा, कम बिजली बिल और ऊर्जा आत्मनिर्भरता का प्रतीक है। एक सोलर पावर चैंपियन होने का मतलब है आप लोगों की सुरक्षा सुनिश्चित करते हैं, उच्च प्रदर्शन देते हैं, और ऐसा दस्तावेज़ी प्रमाण छोड़ते हैं जिस पर कोई भी निरीक्षक या नियोक्ता भरोसा कर सके। नीचे दिए गए “करें / न करें” नियमों को हमेशा ध्यान में रखें:

करें

सुरक्षा को प्राथमिकता दें :

एंकर और लाइफलाइन की जाँच करें, PPE पहनें, LOTO लागू करें और PTW (Permit to Work) का पालन करें। याद रखें कोई भी काम सुरक्षित काम से ऊपर नहीं।

मानकों के अनुसार निर्माण करें:

CEA, BIS और IS कोड्स का पालन करें; एनर्जाइज करने से पहले टॉर्क, इन्सुलेशन, कंटिन्युइटी और पोलैरिटी की जाँच करें।

SLD (Single-Line Diagram) के अनुसार लेबल लगाएँ:

साइट पर लगाए गए लेबल SLD से मेल खाने चाहिए; टैग्स और रूट्स की तस्वीरें खींचें ताकि ट्रेसबिलिटी बनी रहे।

साबित करें, केवल दावा न करें:

बिना एडिट की गई फोटो सबूत (टाइमस्टैम्प, एसेट ID, मीटर डिस्प्ले सहित) रिपोर्ट्स के साथ संलग्न करें।

डाटा के आधार पर काम करें:

PR/CUF और SCADA अलार्म्स की निगरानी करें; नुकसान के कारण IV कर्व और थर्मोग्राफी से पहचानें।

समस्या का पूरा समाधान करें:

CMMS टिकट उठाएँ, निष्कर्षों का दस्तावेजीकरण करें और RCA/CAPA के साथ समस्या को दोबारा होने से रोकें।

साइट का सम्मान करें:

केबल, अर्थिंग और SPD को साफ-सुथरा व्यवस्थित करें; छत या मैदान को साफ छोड़ें, रास्ते अवरोध मुक्त रखें।

सीखते रहें:

NSQF/SCGJ के कौशल मानकों और नई तकनीकों (जैसे बाइफेशियल, TOPCon, ट्रैकर्स, स्टोरेज) से खुद को अपडेट रखें।

न करें

बाईपास न करें:

सुरक्षा इंटरलॉक, गार्ड या आइसोलेशन को समय बचाने के लिए बायपास न करें।

विद्युत प्रवाहित (एनर्जाइज़) न करें:

बिना पूरी जाँच, हस्ताक्षर और स्वीकृति मानदंड पूरे किए सिस्टम को एनर्जाइज न करें।

SCADA अलार्म को क्लियर न करें:

SCADA अलार्म्स को बिना सत्यापित कारण और समाधान प्रमाण के क्लियर न करें।

असंगति न करें:

फील्ड लेबल और SLD नाम में असमानता होने पर काम आगे न बढ़ाएँ।

अधूरी रिपोर्ट जमा न करें:

टेस्ट शीट, फोटो, WIR/MIR या ‘As-built’ डॉक्यूमेंट गायब न हों।

मौसम या परमिट को लेकर अनुमान न लगाएँ :

झुकाव (tilt), दिशा (azimuth), हवा की स्थिति और आवश्यक अनुमतियों की पुष्टि पहले करें।

खामियों को छिपाएँ या डाटा में हेरफेर न करें :

ईमानदार निदान आज बड़े फेल्योर कल रोकते हैं।

कचरा न छोड़ें:

कटे हुए तार, पैकेजिंग और मलबा खतरा बन सकते हैं हैंडओवर से पहले इन्हें पूरी तरह हटाएँ।

निष्कर्ष : एक सोलर पावर चैंपियन हर साइट और हर शिफ्ट में सुरक्षित कार्य, मानक-अनुरूप इंस्टॉलेशन, विश्वसनीय प्रदर्शन और साफ-सुथरा साक्ष्य प्रदान करता है।

मुख्य शब्दावली (पूरा नाम सहित) एक नज़र में

MMS (मॉड्यूल माउंटिंग स्ट्रक्चर):

यह वे रेल्स, क्लैम्प्स, और नींव/बैलास्ट/पाइल्स हैं जो सोलर मॉड्यूल्स को सही झुकाव (tilt) और दिशा में स्थापित रखते हैं। इनका काम है — पैनलों को हवा या बर्फ के दबाव में सुरक्षित रखना, सटीक संरेखण (alignment) सुनिश्चित करना ताकि अधिकतम ऊर्जा प्राप्त हो, और संरचनात्मक व सुरक्षा मानकों (codes) का पालन करना। यह छत (rooftop) और ज़मीन (ground-mount) दोनों प्रकार की साइट्स के लिए अनिवार्य है।

स्ट्रिंग / एरे / ब्लॉक:

एक स्ट्रिंग कई मॉड्यूल्स को श्रृंखला (series) में जोड़कर बनती है। कई स्ट्रिंग्स मिलकर एक एरे बनाते हैं, और कई एरे मिलकर एक इनवर्टर ब्लॉक को ऊर्जा प्रदान करते हैं। यह संरचना फील्ड में इलेक्ट्रिकल डिज़ाइन, IV परीक्षण, लेबलिंग, आइसोलेशन और फॉल्ट डिटेक्शन को नियंत्रित करती है।

इनवर्टर (स्ट्रिंग / सेंट्रल):

यह एक पावर इलेक्ट्रॉनिक डिवाइस है जो DC (Direct Current) को AC (Alternating Current) में बदलता है। स्ट्रिंग इनवर्टर छोटे-छोटे यूनिट होते हैं जो एरे के पास लगाए जाते हैं, जबकि सेंट्रल इनवर्टर बड़े ब्लॉक्स के रूप में काम करते हैं। इनका कार्य MPPT (Maximum Power Point Tracking), सुरक्षा, और ग्रिड-गुणवत्ता वाला आउटपुट देना है — जो कमीशनिंग, मॉनिटरिंग और परफॉर्मेंस के लिए मुख्य है।

SPD / LA / अर्थिंग सिस्टम:

ये सभी उपकरण सोलर सिस्टम को विद्युत उतार-चढ़ाव, बिजली गिरने और फॉल्ट से सुरक्षा प्रदान करते हैं। इनका उद्देश्य उपकरणों की सुरक्षा और अधिकतम अपटाइम सुनिश्चित करना है। ये CEA और BIS के निरीक्षण चेकलिस्ट में अनिवार्य रूप से शामिल होते हैं।

आईवी कर्व और इलेक्ट्रोल्यूमिनेसेंस:

IV परीक्षण (Current-Voltage Curve) सोलर मॉड्यूल या स्ट्रिंग की विद्युत स्थिति (electrical health) को दर्शाता है — यह बताता है कि मॉड्यूल कितना करंट और वोल्टेज दे रहा है। EL परीक्षण (Electroluminescence) अंधेरे कमरे में खींची गई इमेज होती है, जो माइक्रो-क्रैक्स और सेल डिफेक्ट्स को दिखाती है। दोनों परीक्षण स्वीकृति परीक्षण (Acceptance Testing), डायग्नॉस्टिक्स, और वारंटी क्लेम्स के लिए अत्यंत आवश्यक हैं।

टॉर्क, इंसुलेशन, कंटिन्यूटी और पोलैरिटी परीक्षण:

ये सभी ऊर्जा प्रवाह से पहले किए जाने वाले मानक परीक्षण (Pre-energisation Checks) हैं। इनसे यह सुनिश्चित किया जाता है कि टर्मिनेशन अच्छी तरह कसे हों, इंसुलेशन प्रतिरोध ठीक हो, कंडक्टर सही स्थिति में हों, और पोलैरिटी (ध्रुवीयता) सही हो। इन परीक्षणों से हॉट-स्पॉट्स, फॉल्ट्स, और नकली ट्रिपिंग (Nuisance Trips) को रोका जा सकता है, जिससे CEI/CEIG निरीक्षण तेजी से पास होता है।

PR / CUF प्रदर्शन अनुपात / क्षमता उपयोग कारक:

दर्शाता है कि सिस्टम सूर्य की रोशनी (irradiance) से स्वतंत्र होकर कितनी कुशलता से काम कर रहा है। CUF (Capacity Utilisation Factor) बताता है कि नामांकित क्षमता (Nameplate Capacity) के मुकाबले कितनी ऊर्जा समय के साथ उत्पन्न हुई। दोनों मिलकर O&M अनुबंधों (SLAs) और परफॉर्मेंस बेंचमार्किंग के प्रमुख KPI होते हैं।

CMMS कंप्यूटरीकृत रखरखाव प्रबंधन प्रणाली:

यह एक डिजिटल प्रणाली है जिसमें प्रिवेंटिव और करेक्टिव मेंटेनेंस, स्पेयर पार्ट्स ट्रैकिंग, और SLA प्रबंधन किया जाता है। यह प्रणाली अनुशासन (discipline) लागू करती है, MTTR (Mean Time to Repair) कम करती है, साक्ष्य संरक्षित रखती है और ऑडिट प्रक्रिया को सरल बनाती है।

SCADA / DAS / RTU:

SCADA सिस्टम प्लांट का नियंत्रण और विज़ुअल मॉनिटरिंग प्रदान करता है, DAS डेटा संग्रह (data acquisition) करता है, और RTU फील्ड उपकरणों से इंटरफेस स्थापित करता है। ये तीनों मिलकर रियल-टाइम अलार्म, ऊर्जा रिपोर्टिंग, रिमोट रीसेट्स, और विश्वसनीय संचालन सुनिश्चित करते हैं।

SLDC / ABT / DSM:

SLDC राज्य की ग्रिड संचालन और शेड्यूलिंग को नियंत्रित करता है। ABT एक टैरिफ फ्रेमवर्क है जो उपलब्धता आधारित बिलिंग तय करता है। DSM (Deviation Settlement Mechanism) शेड्यूल से विचलन पर निपटान करता है। इनका ज्ञान होना आवश्यक है ताकि पेनल्टी से बचा जा सके और यूटिलिटी-स्केल प्लांट्स अनुपालन में बने रहें।

CEI/CEIG विद्युत निरीक्षण निदेशालय:

यह वैधानिक (statutory) प्राधिकरण है जो किसी भी प्लांट की डॉक्यूमेंटेशन की समीक्षा और साइट निरीक्षण करता है, ताकि ऊर्जा प्रवाह (energisation) से पहले सुरक्षा सुनिश्चित की जा सके। इनकी स्वीकृति (approval) कानूनी कमीशनिंग के लिए आवश्यक होती है और यह टेस्ट रिकॉर्ड्स, ड्रॉइंग्स और सुरक्षा लॉग्स पर आधारित होती है।

CEA / BIS / IS / IEC Rules & Standards:

CEA ग्रिड और सुरक्षा से संबंधित नियम जारी करता है, BIS/IS भारतीय मानक तय करते हैं, और IEC अंतरराष्ट्रीय संदर्भ (international references) प्रदान करता है। डिज़ाइनर, EPC ठेकेदार, और निरीक्षक इन मानकों के आधार पर उपकरण चयन, कमीशनिंग, और स्वीकृति परीक्षण करते हैं।

PPA / CTU / STU / ISTS:

PPA (पावर पर्चेज़ एग्रीमेंट) बिक्री की शर्तों को परिभाषित करता है। CTU/STU ट्रांसमिशन ऑपरेटर हैं। ISTS अंतर-राज्यीय विद्युत नेटवर्क है। ये सभी ऊर्जा निकासी (evacuation) अनुमोदन, मीटरिंग, बिलिंग, और वाणिज्यिक व्यवहार्यता (commercial viability) को नियंत्रित करते हैं।

PSS / Bay (AIS/GIS):

Pooling Substation और स्विचगियर “बे” यह वह स्थान है जहां प्लांट की बिजली को ग्रिड में भेजने के लिए स्टेप-अप किया जाता है। Air-Insulated Switchgear (AIS) या Gas-Insulated Switchgear (GIS) बे में मीटरिंग, प्रोटेक्शन, और इंटरलॉक्स होते हैं। यह सुरक्षित बिजली निकासी (safe evacuation) के लिए केंद्रीय होता है।

सौर मॉड्यूल डीसी कनेक्टर:

यह मानक, मौसम-प्रतिरोधी प्लग है जो PV स्ट्रिंग्स को जल्दी, पोलैरिटी-सुरक्षित और कम प्रतिरोध वाले कनेक्शन के साथ जोड़ता है। इसके फायदे: इंस्टॉलेशन तेज़ होता है, सर्विसिंग आसान होती है, और कॉन्टैक्ट फॉल्ट कम होते हैं।

CT / PT करंट और पोटेंशियल ट्रांसफार्मर:

ये सेंसर हैं जो करंट/वोल्टेज को प्रोटेक्शन रिले और रेवेन्यू मीटर के लिए स्केल करते हैं। इसके जरिए सटीक बिलिंग (SEM/ABT) और सही रिले समन्वय (relay coordination) सुनिश्चित होता है।

SLD सिंगल-लाइन डायग्राम:

एक पृष्ठीय विद्युत नक्शा जो स्रोत, स्विचगियर, सुरक्षा और इंटरकनेक्शन दिखाता है। यह डिज़ाइन समीक्षा, ऑपरेशन, आइसोलेशन/LOTO, और निरीक्षण के लिए सामान्य भाषा है।

ITP / QAP निरीक्षण और परीक्षण योजना / गुणवत्ता आश्वासन योजना:

निर्माण और कमीशनिंग के दौरान कौन, क्या, कैसे और स्वीकृति मानदंड निर्धारित करता है। यह NCR कम करता है, गुणवत्ता मानकीकृत करता है, और हैंडओवर प्रक्रिया तेज करता है।

FAT / SAT फैक्टरी / साइट स्वीकृति परीक्षण:

सिद्ध करता है कि उपकरण निर्माण के समय और इंस्टॉलेशन के बाद निर्दिष्ट मानकों के अनुसार है। इसके जरिए दोष जल्दी पकड़े जाते हैं, वारंटी सुरक्षित रहती है, और ऊर्जा प्रवाह से पहले विश्वास बनता है।

Soiling / Degradation / PID / LID:

गंदगी, गिरावट, पोटेंशियल-इंड्यूस्ड डिग्रेडेशन, लाइट-इंड्यूस्ड डिग्रेडेशन Soiling और Degradation: गंदगी और उम्र बढ़ने से होने वाले नुकसान। PID (Potential-Induced Degradation) और LID (Light-Induced Degradation) विशेष प्रकार के नुकसान। इन्हें सफाई, मॉनिटरिंग और उपायों से नियंत्रित किया जाता है ताकि PR बहाल रहे और वारंटी सुरक्षित रहे।

SEM / ABT Meter विशेष ऊर्जा मीटर:

ABT/DSM के अंतर्गत समय-संकेतित मीटरिंग करता है। यह वाणिज्यिक निपटान और ग्रिड अनुशासन (grid discipline) का आधार है।

JJSA / HIRA / PTW / LOTO / WAH — सुरक्षा उपकरण (Safety Toolkit)

कार्य सुरक्षा विश्लेषण, जोखिम पहचान और मूल्यांकन, कार्य अनुमति, ऊर्जा अलग करना और टैग लगाना, और ऊँचाई पर कार्य. ये सभी शून्य-हानि (zero-harm) निष्पादन सुनिश्चित करते हैं और ऑडिट में अनिवार्य हैं।

ALMM Approved List of Models & Manufacturers:

MNRE द्वारा अधिकृत PV मॉड्यूल सूची, जो विशेष योजनाओं और टेंडरों के लिए मान्य है। यह योग्यता, बैंकिंग और खरीद विकल्पों को प्रभावित करता है।

STC / NOCT मॉड्यूल रेटिंग स्थितियाँ:

प्रयोगशाला में नामप्लेट मानक; क्षेत्रीय परिस्थितियों का प्रतिनिधित्व ये यथार्थ ऊर्जा उत्पादन अनुमान और इन्वर्टर आकार निर्धारण में सहायक होते हैं।

GHI / DNI / DHI / POA विकिरण प्रकार :

संपूर्ण क्षैतिज विकिरण, प्रत्यक्ष विकिरण, विकृत क्षैतिज विकिरण, सौर पैनल के समतल पर विकिरण, ये साइट चयन, छाया विश्लेषण और PVsyst/HelioScope सिमुलेशन में उपयोग होते हैं।

Specific Yield kWh per kWp:

सामान्यीकृत ऊर्जा माप (kWh/kWp/साल) जो साइट और O&M प्रदर्शन की तुलना में मदद करता है। उच्च Specific Yield = बेहतर डिज़ाइन, निष्पादन और रखरखाव।

BOS (सिस्टम का संतुलन भाग):

यह सोलर प्लांट के वे सभी हिस्से हैं जो मॉड्यूल्स के अलावा होते हैं — जैसे स्ट्रक्चर, केबल्स, SCB/AJB/JB बॉक्सेस, इनवर्टर, ट्रांसफॉर्मर, और सुरक्षा उपकरण। BOS पूरे प्लांट को पूर्ण करता है, बिजली के सुरक्षित संचरण (power evacuation), सुरक्षा, और मीटरिंग को सक्षम बनाता है। यह किसी भी अनुपालनयुक्त और विश्वसनीय इंस्टॉलेशन की रीढ़ है।

SCB / AJB / JB कम्बाइनर / जंक्शन बॉक्स:

ये वे वेदरप्रूफ बॉक्स होते हैं जो कई स्ट्रिंग्स को एक साथ जोड़ते हैं और जिनमें फ्यूज़, SPD, शंट्स, और मॉनिटरिंग डिवाइस लगे होते हैं। इनका उद्देश्य है — सुरक्षा और मापन सुनिश्चित करना, केबलिंग को व्यवस्थित रूप देना, और कमीशनिंग या O&M (ऑपरेशन व मेंटेनेंस) के दौरान त्वरित आइसोलेशन में सहायता करना।

डीसी/एसी अनुपात:

यह अनुपात स्थापित DC क्षमता (kWp) को इनवर्टर की AC क्षमता (kW) से विभाजित करके प्राप्त किया जाता है। थोड़ा ओवरसाइजिंग करने से सुबह और शाम की ऊर्जा प्राप्ति बढ़ती है (हालाँकि दोपहर में कुछ क्लिपिंग होती है)। यह अनुपात LCOE (Levelized Cost of Energy) को बेहतर करने के लिए अनुकूलित किया जाता है, साथ ही तापीय सीमा, ग्रिड कोड्स और मालिक की विशिष्टताओं का पालन करता है।

WIR / MIR कार्य / सामग्री निरीक्षण अनुरोध:

ये औपचारिक QA (Quality Assurance) चेकप्वाइंट्स होते हैं जिनका उपयोग कार्य की गुणवत्ता और सामग्री को ड्रॉइंग्स व ITP/QAP मानकों से मिलान करने के लिए किया जाता है। ये हैंडओवर, वैधानिक अनुमोदन (statutory approvals) और वारंटी सपोर्ट के लिए आवश्यक दस्तावेजी प्रमाण तैयार करते हैं।

MPPT Maximum Power Point Tracking:

इन्वर्टर/कंट्रोल फ़ंक्शन जो स्ट्रिंग्स को अधिकतम ऊर्जा के लिए उनके आदर्श V–I पॉइंट पर बनाए रखता है। यह बदलते विकिरण और तापमान में भी ऊर्जा उत्पादन बढ़ाता है।

Bifacial / Albedo:

दोनों तरफ से ऊर्जा संग्रह, जमीन की परावर्तनशीलता जो पीछे की तरफ़ से उत्पादन बढ़ाती है सही साइट लेआउट और GCR के साथ ये ऊर्जा उत्पादन बढ़ा सकते हैं।

Single-Axis Tracker / Backtracking / Stow:

सूर्य का अनुसरण करने वाली मोटरयुक्त संरचना, पंक्ति की छाया से बचाव, तेज़ हवा में सुरक्षित स्थिति ये ऊर्जा उत्पादन बढ़ाते हैं, लेकिन कंट्रोल और O&M की जरूरत भी बढ़ाते हैं।

PERC / TOPCon / HJT सेल टेक्नोलॉजीज :

आधुनिक सेल वास्तुकला, उच्च दक्षता और अलग-अलग गिरावट/तापमान विशेषताओं के साथ। सही तकनीक का चयन PR, जीवनकाल और LCOE को प्रभावित करता है।

Temperature Coefficients (Voc/Pmax):

प्रत्येक डिग्री सेल्सियस तापमान वृद्धि पर % पावर/वोल्टेज गिरावट। मॉड्यूल गर्म होने पर कम ऊर्जा उत्पादन करते हैं। उपयोग: केबल और इन्वर्टर आकार निर्धारण, ऊर्जा उत्पादन अनुमान।

Voc / Isc / Vmp / Imp मॉड्यूल इलेक्ट्रिकल पॉइंट्स:

ओपन-सर्किट वोल्टेज, शॉर्ट-सर्किट करंट, अधिकतम पावर पर वोल्टेज/करंट उपयोग: स्ट्रिंग साइजिंग, इन्वर्टर विंडोज़, और सुरक्षा सीमा निर्धारण।

DC Isolator / String Fuse / SPD Type II–III:

स्ट्रिंग-साइड सुरक्षा और पृथक्करण का मानक तिकड़ी। उपयोग: सुरक्षित रखरखाव, दोष ऊर्जा सीमित करना, और ट्रांज़िएंट से सुरक्षा।

AFCI Arc-Fault Circuit Interruption:

DC सर्किट में आर्किंग का पता लगाने और सुरक्षित रूप से ट्रिप करने वाली सुरक्षा। उपयोग: बड़े रूफटॉप और कारपोर्ट्स पर आग का खतरा कम करना।

ANSI Relay Codes (27/59/81/50/51/67):

संरक्षण फ़ंक्शन्स के लिए सांख्यिक संक्षिप्त नाम (अंडर/ओवर वोल्टेज, फ़्रीक्वेंसी, ओवरकरंट, डायरेक्शनल)। उपयोग: सबस्टेशन/बे सुरक्षा योजनाओं और टेस्ट शीट्स में।

Cable Types (1.5 kV DC / XLPE AC):

UV-प्रतिरोधी DC PV केबल क्रॉस-लिंक्ड पॉलीएथिलीन (XLPE) AC केबल सही वर्ग और आकार में। उपयोग: हानि, गर्मी, और ट्रिप कम करना।

Metering Class (0.2s) / CT–PT Class & Burden:

रेवेन्यू मीटर और इंस्ट्रूमेंट ट्रांसफॉर्मर्स के लिए सटीकता वर्ग उपयोग: बिल और DSM सेटलमेंट को सटीक और वैध बनाना।

SMB String Monitoring Box:

स्ट्रिंग के लिए करंट सेंसर वाला एक कम्बाइनर बॉक्स। उपयोग: PR लॉस हंटिंग, प्रारंभिक फॉल्ट डिटेक्शन, और लक्षित रखरखाव।

Clipping / Curtailment:

तब होता है जब DC ऊर्जा इन्वर्टर AC सीमा से अधिक होती है और ऊर्जा खो जाती है।, ग्रिड या डिस्पैचर द्वारा लागू की गई ऊर्जा में कमी। उपयोग: दोनों को ट्रैक किया जाता है ताकि ऊर्जा उत्पादन में अंतर समझा जा सके।

उपलब्धता vs विश्वसनीयता:

वह प्रतिशत समय जब प्लांट विद्युत भेज सकता है।,विफलताओं से मुक्त रहने की क्षमता (MTBF/MTTR से जुड़ी)। उपयोग: दोनों SLA और बोनस/पेनल्टी सिस्टम के लिए इनपुट देते हैं।

BCU Bay Control Unit:

AIS/GIS बे के लिए कंट्रोलर जो SCADA से इंटरफेस करता है। उपयोग: सबस्टेशन में इंटरलॉक, कमांड और इवेंट रिकॉर्ड्स का प्रबंधन।

GNA / LTA / MTOA / STOA Grid Access:

सामान्य नेटवर्क पहुंच, दीर्घ/मध्यम/संक्षिप्त अवधि की खुली पहुंच) उपयोग: यह निर्धारित करता है कि कौन कितनी बिजली कितने समय तक नेटवर्क में स्थानांतरित कर सकता है।

CTUIL / STU Transmission Authorities:

केंद्रीय संचरण प्राधिकरण ,राज्य संचरण प्राधिकरण) उपयोग: कनेक्टिविटी, बे आवंटन, और एनर्ज़ाइजेशन से पहले अनुमोदन।

LCOE / BoM / BoQ:

ऊर्जा की जीवनकाल लागत , सामग्री की सूची, मात्राओं की सूची, उपयोग: बजटिंग, खरीद और मालिक के निर्णयों के लिए आधार।

EPC / EPCM / IPP / O&M SLA:

निर्माण, मालिक द्वारा प्रबंधित, स्वतंत्र विद्युत उत्पादक, संचालन और रखरखाव सेवा स्तर समझौते. उपयोग: चुना गया मॉडल दायरा, जोखिम और KPI तय करता है।

Net-Metering / Gross-Metering:

छत पर ऊर्जा उत्पादन का उपभोग के साथ संतुलन।, सभी ऊर्जा को ग्रिड को बेचना। उपयोग: आर्थिक गणना, मीट्रिंग सेटअप और दस्तावेज़ीकरण पर प्रभाव।

CFA (PM Surya Ghar):

MNRE के तहत आवासीय रूफटॉप्स के लिए Central Financial Assistance (केंद्रीय वित्तीय सहायता)। उपयोग: पात्रता, सब्सिडी राशि और दस्तावेज़ तैयार करना — DISCOM डॉसियर्स के लिए महत्वपूर्ण।

BESS / PCS / RTC Storage & Hybrid:

बैटरी ऊर्जा भंडारण प्रणाली, ऊर्जा रूपांतरण प्रणाली, 24×7 बिजली आपूर्ति, उपयोग: फर्म पावर, शिफ्टिंग और पीक शेविंग सक्षम करना, आधुनिक PPA में ऊर्जा स्थिरता प्रदान करना।

SCGJ QP/NOS Skill Council for Green Jobs Standards:

नौकरी मानक,विस्तृत कार्य, ये प्रशिक्षण, मूल्यांकन और प्रमाणपत्र को वास्तविक नौकरी रोल के साथ संरेखित करते हैं।

NSQF - National Skills Qualifications Framework:

भारत की कौशल स्तर प्रणाली जो सीखने के परिणाम और प्रमाणपत्र निर्धारित करती है। यह नियोक्ताओं को आपकी क्षमता स्तर तुरंत समझने में सक्षम बनाता है।

लाभ और प्रमाणन के फायदे

For Candidates
काम करने के लिए तैयार कौशल, प्रमाणित:

इंस्टॉलेशन → कमीशनिंग → O&M तक हैंड्स-ऑन ट्रेनिंग (IV/इन्सुलेशन/टॉर्क चेक, SCB/इन्वर्टर स्टार्ट-अप, SCADA बेसिक्स) के साथ-साथ डॉक्यूमेंटेशन जो ऑडिट पास करता है (SLD-अनुरूप लेबल, WIR/MIR, फोटो एविडेंस)।

दो प्रमाणपत्र जो योग्यता दिखाते हैं:
  • ○ बेसिक सर्टिफिकेट (मॉड्यूल 1–3): सुरक्षा, इंस्टॉलेशन और कमीशनिंग के मूल तत्व।
  • ○ एडवांस सर्टिफिकेट (मॉड्यूल 4–5): दो विशेषज्ञताएँ + कैपस्टोन प्रोजेक्ट + ऑन-जॉब ट्रेनिंग (OJT)। ये दोनों NSQF/SCGJ आउटपुट्स के अनुरूप हैं, जिससे उद्योग-मान्यता प्राप्त स्तर स्पष्ट होते हैं।
सत्यापनीय और साझा करने योग्य:

QR-कोडेड सर्टिफिकेट जिसमें यूनिक ID (LinkedIn-रेडी) और डिजिटल बैज होता है रिक्रूटर्स के लिए तुरंत सत्यापन आसान।

पोर्टफोलियो जिस पर नियोक्ता भरोसा कर सकते हैं:

सर्वे नोट्स, SLD-मिलान लेबल, IV/IR/EL रिपोर्ट, PR/CUF स्नैपशॉट, RCA/CAPA राइट-अप्स ऐसे सबूत जो दिखाते हैं कि आप पहले दिन से काम कर सकते हैं।

आत्मविश्वास और सुरक्षा संस्कृति:

LOTO, PTW, JSA/HIRA के व्यावहारिक अभ्यास ऑन-साइट चिंता और गलतियों को कम करते हैं।

तेज़ इंटरव्यू और बेहतर ऑफ़र:

स्टैंडर्डाइज्ड स्किल भाषा (NSQF/SCGJ) स्क्रीनिंग को छोटा करती है; दिखाने योग्य सुरक्षा (PPE, LOTO, WAH) और प्रक्रिया अनुशासन अलग दिखता है।

करियर मोबिलिटी:

इंस्टॉलेशन/कमीशनिंग से शुरू करके O&M/SCADA/QA में आगे बढ़ें, प्रोटेक्शन या मॉड्यूल-लाइन मैन्युफैक्चरिंग में विशेषज्ञता हासिल करें बिना शुरुआत दोबारा किए।

For Employers
तेज़ ऑनबोर्डिंग; कम प्रशिक्षण खर्च:

ग्रैजुएट पहले से ही SLD-अनुरूप नामकरण, चेकलिस्ट्स का उपयोग और ऑडिट-रेडी पैक तैयार करते हैं कम मार्गदर्शन, जल्दी उत्पादकता।

सुरक्षा और अनुपालन अंतर्निहित:

उम्मीदवार PPE, LOTO, WAH, PTW में निपुण होते हैं और CEA/BIS/IS अपेक्षाओं से परिचित होते हैं कम घटनाएँ, CEI/CEIG निरीक्षण अधिक सुचारू।

मापनीय O&M प्रभाव:

SCADA ट्रायज, IV डायग्नोस्टिक्स, थर्मोग्राफी, RCA/CAPA में कौशल PR/CUF बढ़ाने, MTTR कम करने और दोषों को दोहरने से रोकने में मदद करता है।

मानकीकृत कौशल संकेत:

NSQF/SCGJ-मैप्ड सर्टिफिकेट विभिन्न विक्रेताओं और साइट्स पर क्षमता को स्पष्ट बनाते हैं बेहतर वर्कफोर्स योजना और विक्रेता QA ।

ट्रेसबिलिटी और ऑडिट तैयारी:

ग्रैजुएट लगातार WIR/MIR, टॉर्क/इन्सुलेशन/IV शीट्स फोटो और इंस्ट्रूमेंट IDs के साथ तैयार करते हैं वारंटी और रेगुलेटर्स के लिए साफ-सुथरा सबूत।

डाउनटाइम जोखिम कम:

सही प्री-एनर्जाइजेशन प्रैक्टिस (पोलैरिटी, इन्सुलेशन, टॉर्क) और अनुशासित लेबलिंग/SLD संरेखण कमीशनिंग और स्विचिंग में महंगे त्रुटियों को रोकते हैं।

विकास के लिए टैलेंट पाइपलाइन:

स्पष्ट बेसिक → एडवांस्ड → स्पेशलिस्ट पथ कई साइट्स के विस्तार का समर्थन करता है बिना गुणवत्ता से समझौता किए।

प्रमाणन के फायदे (दोनों पक्षों के लिए)

वास्तविक भूमिकाओं से मेल खाता है:

आउटपुट SCGJ QPs/NOS (जैसे InstallerElectrical, O&M Technician) के अनुरूप हैं, जिससे प्रशिक्षण = कार्यस्थल के कार्य।

सत्यापन और पोर्टेबिलिटी:

QR सत्यापन, यूनिक IDs और स्टैंडर्ड टर्मिनोलॉजी क्रेडेंशियल्स को EPCs/O&M प्रदाताओं और राज्यों में पोर्टेबल बनाते हैं।

फील्ड जैसी असेसमेंट:

रैंडम MCQs + OSCE-स्टाइल प्रैक्टिकल (IV/इन्सुलेशन/LOTO/SCADA स्टेशन्स) + कैपस्टोन/OJT।

निरंतर सुधार:

पास रेट और कौशल अंतराल का विश्लेषण प्रशिक्षण योजनाओं में फीडबैक देता है, उम्मीदवारों को अपस्किल करने और नियोक्ताओं को ऑनबोर्डिंग सुधारने में मदद करता है।

“सूरज की रोशनी से सुरक्षित मेगावॉट तक: सीखो, बनाओ, साबित करो।”

यह मॉड्यूल ग्राहक इनपुट और सोर्स डॉक्यूमेंट को साफ़, सत्यापित रिकॉर्ड में बदलने के लिए बनाया गया है, ताकि स्पष्ट ऑडिट ट्रेल बने।

यह सीखने और अभ्यास का मॉड्यूल है, जिसमें इंटेक स्क्रिप्ट, ट्रांसक्रिप्शन ड्रिल, त्रुटि‑खोज अभ्यास और सहायक‑अनुकूल वर्कफ़्लो शामिल हैं।

इस मॉड्यूल में क्या सीखेंगेmodule_book_dias
  • एनर्जी बनाम पावर (ऊर्जा बनाम शक्ति), वोल्टेज/करंट/रेसिस्टेंस (ओम लॉ, ओम का नियम), पीवी मॉड्यूल और बीओएस, स्ट्रिंग्स--ऐरे/ब्लॉक्स--इनवर्टर--ट्रांसफॉर्मर के जरिये बिजली कैसे प्रवाहित होती है और स्ट्रिंग बनाम सेंट्रल इन्वर्टर और एमपीपीटी का महत्त्व
  • सबसे पहले सुरक्षाः इसमें आपको सही पीपीई चुनने और उसे फिट करने की जानकारी दी जाएगी। लॉग आउट-टैग आउट (एलओटीओ--लोटो) के जरिये ऊर्जा को सही तरीके से अलग करना, वर्क ऐट हाइट (डब्ल्यूएएच) में सर्टिफाइड ऐंकर्स का उपयोग और 100 फीसदी टाय ऑफ सुनिश्चित करना शामिल है। इसके अलावा, जेएसए/एचआईआरए के जरिये हजार्ड्स (खतरों) को पहचानना और उसे नियंत्रित करना। परमिट टु वर्क (पीटीडब्ल्यू) के जरूरी तत्वों का पालन करना, उपकरणों को सुरक्षित तरीके से हैंड करना और बिजली के झटकों यानी इलेक्ट्रिक शॉक से बचने की बुनियादी जानकारी के साथ-साथ सुरक्षा के उपाय भी बताए जाएंगे।
  • साइट पर व्यवहार और डॉक्यूमेंटेशनः फील्ड लेबल सिंगल लाइन डायग्राम (एसएलडी) के अनुरूप होने चाहिए। इसके लिए आपको चेकलिस्ट बनाने होंगे, जिसमें मानकों (स्टैंडर्ड) को करें एवं पुष्टि करें (डो ऐंड कन्फर्म) स्टेप्स जैसे- टॉर्क, पोलैरिटी, इंसुलेशन में तब्दील कर दे। इसके अलावा, फोटो साक्ष्य में समय (टाइम स्टांप) और ऐसेट आईडी शामिल करें ताकि ऑडिट (जांच) और गहन निगरानी (रूट कॉज एनालिसिस) में सहूलियत हो।
  • तय मानक और भूमिकाए (स्टैंडर्ड ऐंड रोल): एनएसक्यूएफ/एससीजीजे के अनुसार नौकरी की भूमिका और कार्यकुशलता (कंपीटेंसी) जैसे- इंस्टॉलर अथवा ओऐंडएम तकनीशियम की क्या परिभाषा होती है। सीईए/बीआईएस/आईएस कोड्स क्यों साइजिंग (आकार,) सेफ्टी (सुरक्षा), टेस्टिंग (परीक्षण) और रिकॉर्ड्स (लेखा) कार्य सुरक्षा, निरीक्षण योग्य और नौकरी के लिए तैयार हो इसलिए जरूरी माने जाते हैं।
इस मॉड्यूल के उद्देश्य module_book_dias

इस मॉड्यूल के अंत तक आप:

  • इस मॉड्यूल के जरिये आप आसानी से पीवी सिस्टम को समझ जाएंगे। पीपीई/एलओटीओ/डब्ल्यूएएच का उपयोग कर सुरक्षित रूप से काम कर सकेंगें। जेएसए/एचआईआरए और पीटीडब्ल्यू के अनुसार खतरों की पहचान कर सकेंगे और उन्हें नियंत्रित कर पाएंगे। इसके अलावा, ड्राइंग्स, लेबल्स, चेकलिस्ट्स और फोटो साक्ष्य के जरिये आसान, तेज और ऑडिट योग्य पेशेवर के तौर पर काम कर पाएंगे।

यह मॉड्यूल आपको संरचनाओं (स्ट्रक्चर्स), वायरिं) और कोड-पालन (कोड कंप्लायंस) इंस्टॉलेशंस के साथ व्यावहारिक अनुभव (हैंड्स ऑन एक्सपीरियंस) देता है।

इस मॉड्यूल में क्या सीखेंगेmodule_book_dias
  • एमएमएस और लेआउट: रेल्स, क्लैम्प्स, फाउंडेशन/ब्लास्ट, टिल्ट/अज़ीमुथ सेटअप, और ग्राउंड कवरेज रेश्यो (जीसीआर) की बुनियादी सिद्धांत बताए जाएंगे।
  • स्ट्रिंगिंग और केबलिंग: एमसी4 टर्मिनेशन, डीसी/एसी केबलिंग और रूटिंग, अर्थिंग, एसपीडी/एलए ग्लैंड/लग और टॉर्क की जानकारी मिलेगी।
  • बॉक्सेस और बैलेंस ऑफ सिस्टम (बीओएस): एससीबी / एजेबी / जेबी बॉक्सेस, कॉम्बाइनर फ्यूज और आइसोलेटर, स्ट्रिंग मॉनिटरिंग बॉक्सेस (एसएमबी)।
  • रूफटॉप और यूटिलिटी में अंतर: नेट मीटरिंग डॉसियर्स बनाना बनाम पूलिंग सबस्टेशन/बे में काम करना और उससे जुड़े दस्तावेज तैयार करना।
इस मॉड्यूल का उद्देश्य module_book_dias

इस मॉड्यूल के अंत तक आप:

  • एमएमएस और केबलिंग को स्पेसिफिकेशन के अनुसार इंस्टॉल करना, डब्ल्यूआईआर/एमआईएर पूरा करना ताकि गुणवत्ता सुनिश्चित हो सके और आपके काम-काज का ऑडिट आसानी से पूरा किया जा सके।

यह मॉड्यूल आपको पहली एनर्जाइजेशन से लेकर ओऐंडएम की पूरी जानकारी देता है और उसके तह तक ले जाता है, ताकि आप प्लांट (संयंत्र) को सुरक्षित और आसानी से चला सकें।

इस मॉड्यूल में क्या सीखेंगे module_book_dias
  • प्री एनर्जाइजेश टेस्ट: टॉर्क, इंसुलेशन, कंटिन्यूटी, पोलैरिटी और आईटी-कर्व की बारीक जानकारी।
  • इन्वर्टर स्टार्ट-अप और हैंडओवर: पैरामीटर चेक्स, एमपीपीटी, प्रोटेक्शन इंटरलॉक्स, और एज बिल्ट्स (As-Builts)।
  • स्काडा/डीएएस की बारीक जानकारीः अलार्म, टैग्स, पीआर/सीयूएफ डैशबोर्ड, एविडेंश के स्क्रीनशॉट आदि की जानकारी।
  • शुरुआती ओऐंडएम: क्लीनिंग और वेजिटेशन एसओपी, सीएमएमएस टिकट, स्पेयर्स, पहले महीने का पीआर रिव्यू।
इस मॉड्यूल का उद्देश्य module_book_dias

इस मॉड्यूल के अंत तक आप:

  • सुरक्षित तरीके से कमिशन यानी शुरुआत करना, साफ-सुथरा हैंडओवर तैयार करना (टेस्ट शीट्स, फोटो, As-Builts), और डेटा-आधारित कार्रवाई के जरिये ओऐंडएम टिकट्स को खोलना और बंद करना।

यह मॉड्यूल आपको गहन, रोल-रेडी कौशल सिखाता है। अपने करियर लक्ष्य के अनुसार दो ट्रैक्स चुनें।

इस मॉड्यूल में क्या सीखेंगे module_book_dias
  • Track 4A: O&M डायग्नोस्टिक्स और थर्मोग्राफी इसमें आप सीखेंगेः फॉल्ट ट्री, पीआर गैप्स, ड्रोन/हैंडल्ड आईआरपी, पीआईडी/एलआईडी लक्षण, वारंटी/आरएमए, आरसीए/सीएपीए। नतीजेः प्रदर्शन में कमी का समाधान और पीआर रिकवरी यानी उसे ठीक करने की प्रक्रिया को केस के तौर पर प्रस्तुत करने के तरीके।
  • Track 4B: स्काडा, यील्ड और शिड्यूलिंग (एसएलडीसी) इसमें आप सीखेंगेः हिस्टोरियन टैग्स, अलार्म ट्रायज, खास यील्ड एनालिटिक्स, डे अहेड, इन्ट्रा डे शिड्यूल, एबीटी/डीएसएम लॉग्स, नतीजेः बेसिक शेड्यूल चलाने की जानकारी, कर्टेलमेंट/क्लिपिंग को जस्टाफाई कर पाएंगे और साप्ताहिक केपीआई रिपोर्ट बनाकर उसे जारी करना सीखेंगे।
  • Track 4C: सब-स्टेशन, प्रोटेक्शन और बे ऑपरेशंस इसमें आप सीखेंगेः स्विचयार्ड उपकरण, सीटी/पीटी, रिले, सेकेंडरी इंजेक्शन, बे एनर्जाइजेशन, एंटी-आइलैंडिंग और ग्रिड इवेंट्स, सीईआईजी/सीईए से दस्तावेज तैयार करने के तरीके। नतीजेः सब-स्टेशन, प्रोटेक्शन भूमिकाओं के लिए कमिशनिंग और ऑपरेशंस (परिचालन) को समझना और सुरक्षित रूप से लागू करना।
  • Track 4D: क्वालिटी, ईएल/आईवी और कॉम्प्लायंस आप सीखेंगेः आईटीपी/क्यूएपी, सैंपलिंग (एक्यूएल), ईए इमेजिंग एक्सेपटेंस (स्वीकृति), एनसीआर क्लोजर, एफएटी/एसएटी विजिटिंग स्किल्स नतीजेः क्यूए वॉक को लीड करना और उचित सबूतों के साथ पंच लिस्ट बंद करना।
  • Track 4E: डिजाइन ऐंड ड्राफ्टिंग (ऑटो सीएडी+पीवी प्रणाली/हेलियोस्कोप) आप सीखेंगेः लेआउट्स, केबल/वोल्टेज-ड्रॉप, डीसी/एसी अनुपात, अर्थिंग, एनर्जी मॉडलिंग और लॉसेस। नतीजेः बीओएम/बीओक्यू और यील्ड समरी के साथ डिजाइन पैक तैयार करना।
  • Track 4F: ईपीसी प्रोक्योरमेंट (खरीद) और स्टोर (भंडारण) आप सीखेंगे: बीओएम → पीआर → पीओ फ्लो, वेंडर क्वालिफिकेशन, इनकमिंग क्यूए, इन्वेंट्री केपीआई, एसईआरपी/ईआरपी एंट्री के तौर-तरीके नतीजेः समय पर जरूरी सामग्री उपलब्ध कराने का हुनर, आसानी से और निगरानी योग्य परियोजनाओं को आगे बढ़ाने के तौर तरीके।

यह मॉड्यूल साबित करता है कि आप नौकरी के लिए तैयार हैं। एक वास्तविक स्थिति का समाधान करें और साइट पर इमर्शन पूरा करें।

इस मॉड्यूल में क्या सीखेंगे module_book_dias
  • कैपस्टोन केसः टीम प्रोजेक्ट (उदाहरण: पीआर डिप रिकवरी, 200 किलोवॉट रूफटॉप डिजाइन और टीऐंडसी, ट्रैकर फॉल्ट वेव)।
  • ऑन जॉब ट्रेनिंग (ओजेटी): 60 से 80 घंटे ईपीसी/ओऐंड/डिस्कॉम साइट पर; लॉगबुक पूरा करना और सुपरवाइजर से साइन-ऑफ लेना।
  • मूल्यांकन और प्रेजेंटेशन: प्रैक्टिकल ओएससीई स्टेशन + वाइवा (मौखिक); एविडेंस के साथ पोर्टफोलियो सबमिट करना।
इस मॉड्यूल का उद्देश्य module_book_dias

इस मॉड्यूल के अंत तक आप:

  • एक सुरक्षित, एविडेंस-बेस्ड समाधान देना, अपना पोर्टफोलियो प्रस्तुत करना (सर्वे, डब्ल्यूआईआर/एमआईआर, आईवी/इंसुलेशन, ईएल/आईआर, स्काडा केपीआई), और एससीजीजे आउटपुट्स के अनुसार एडवांस सर्टिफिकेट हासिल करना।